

Green Synthesis and Relative Study of FTIR Spectra of MnO₂NPs by using Leaf Pulp Extract of Aloe vera

Praveen G.^{1*}, Garg A.K.² and Rani S.³

1. Ch. V. College of Higher Education, Sirondhan, Hapur, U.P., INDIA

2. Department of Chemistry, SSV College, Hapur, Chaudhary Charan Singh University, Meerut, U.P., INDIA

3. Department of Chemistry, Bhagwant University, Ajmer, Rajasthan, INDIA

*ghazala.prvn@gmail.com

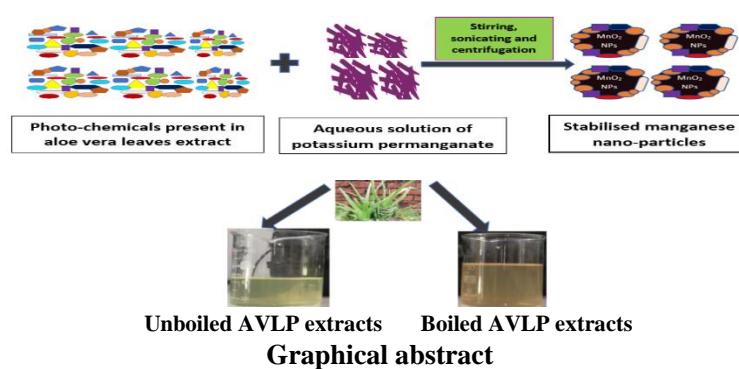
Abstract

This work incorporates a comparison of Fourier transform infrared (FTIR) spectra with a wealth of studies to validate the production of nano MnO₂ powder. Using Aloe Vera leaf pulp as a reducing, stabilizing and capping agent, we succeeded to effectively synthesize MnO₂ nanoparticles using a green synthesis approach. The dried products were then analyzed using FTIR spectroscopy.

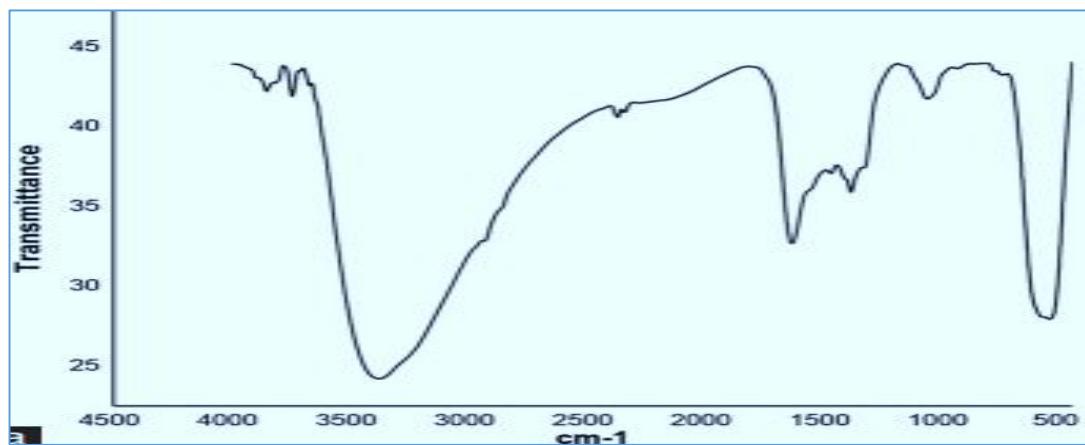
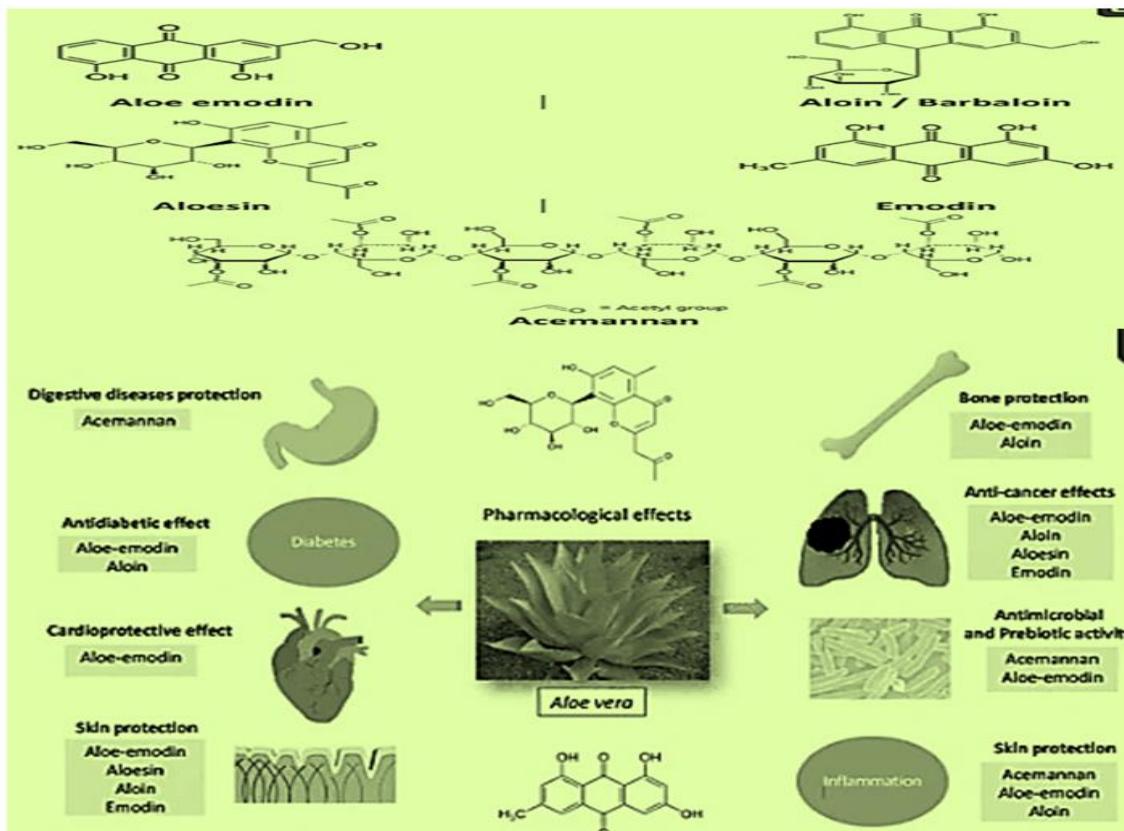
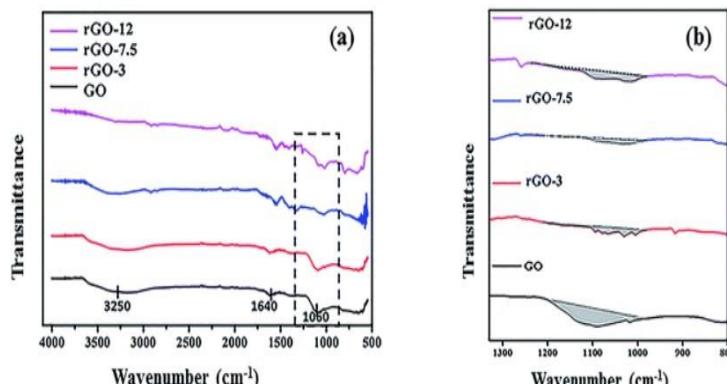
Because of their high surface area to volume ratio, nanoparticles are able to exhibit unique qualities that set them apart from larger particles including an infinite range of physico-chemical characteristics. Antimicrobial action against pathogenic microbes is one of the most widely used and relevant degradation qualities and a wealth of research on sanitation, hygiene, water treatment and health concerns at both the individual and commercial levels may be seen. This study is based on the comparative study of FTIR spectra for the formation of MnO₂ nanoparticles.

Keywords: Antimicrobial action, green synthesis, FTIR spectra, MnO₂ nanoparticles.

Introduction


Nanomaterials (NMs) are typically less than 100 nm in size. Worldwide interest in nanotechnology has grown due to its many possible uses in various fields of innovative research. Continuously promising and environmentally benign uses of metallic NMs are indicating a growing need. Some of the significant and in-demand domains where metallic nanoparticles are extensively researched, include separation, catalysis, medicine, thermal conductivity, water purification and electrical conductivity. Compared to the bulk, NMs have a comparatively larger surface area as one of their unique

properties. A variety of biological, chemical and physical processes can be used to synthesize these.




Among these techniques, green synthesis is a respectable substitute because of its great efficiency, cheap cost and less harmful by products. Many sectors including the biological sciences, pharmaceutical, engineering, food and nutrition, environmental sciences and sensors, employ metal-based NMs. Plant extract contains numerous biomolecules and photo-chemicals that function as reducing or capping agents^{19,21,23}. Graphene oxide(GO), copper oxide, calcium oxide, magnesium oxide, zinc oxide, titanium oxide, manganese oxide, silicon oxide, cerium oxide, cobalt-aluminium oxide and iron oxides are often utilized as NMs. Aloe vera (AV) leaf pulp (AVLP) (Botanical name; *Aloe Barbadenis Miller*) is typically utilized for skin care, cosmetics and health-related items.

Therefore, AVLP is highly recommended as a home therapy. Contrarily, manganese dioxide nanoparticles (MnO₂NPs) are extremely beneficial for antibacterial activity, photo-catalysis and catalysis, sensor production and sanitation^{1,5,7-9,14-16,18,19,24,29}. Excellent catalytic qualities of MnO₂NPs have been used to enhance epoxy resin's fire safety, where TEM and TGIR analyses of the material's morphology and crystalline structure were conducted⁷. The biosynthesis of MnO₂NPs has been widely recognized in recent years by plant extraction methods¹³.

More than 200 different biologically active phytochemicals are investigated in AV plant; however, aloe-emodin, aloin, aloesin, emodin and acemannan are the most investigated phytochemicals. Traditionally AV is applied for burns, cuts, insect bites, cure sores, antimicrobial, anti-inflammatory, antihyperlipidemic, antidiabetic, anti-cancer, digestion protection, wound healing, skin health, blood sugar, dental plaque, canker sores (mouth ulcers/infections) applications^{17,25}.

Graphical abstract

Figure 1: FTIR spectrum of $\text{MnO}_2\text{NPs}^{13}$ Figure 2: Pharmacologically active isolated components and their effect ²⁵Figure 3: a) FTIR spectra of GO, rGO-3, rGO-7.5 and rGO-12 samples.
(b) Peak area analysis³ of FTIR spectra at 1060 cm^{-1}

AV as a green reducing agent is applied for the reduction of GO. Maximum reduction was achieved with 7.5 g of AV with the efficiency of about 73% and marked by FTIR spectrum having notable dye removal ability with a maximum efficiency of ~98%. The methylene blue dye removal capability of rGO(7.5AV) was linked to enhanced surface area, π - π interaction and strong electrostatic attraction. Additionally, adsorption kinetics investigation proved pseudo second order adsorption phenomena. rGO recyclability confirmed an excellent desorption capability, enhanced current density and higher conductivity than GO sample.

Proposed reduction mechanism demonstrates the role of sugars and anthaquinones as major components in the reduction of GO with electronics and sensing applications³. Amongst chemical and physical techniques, the biosynthesis method of metal nanoparticles has received the interest of many researchers owing to its environmental safety, simplicity and inexpensiveness. MnO₂NPs were successfully synthesised using green tea extract as the reducing agent and characterised by UV-Vis spectroscopy, X-ray diffractometry and FTIR spectroscopy. The shape and size of the MnO₂NPs were obtained by Scanning electron microscopy.

The size of MnO₂NPs was 20-30 nm. The MnO₂NPs exhibited strong antibacterial activity against pathogenic bacteria, namely, *Escherichia coli*, *Klebsiella*

pneumoniae and *Pseudomonas aeruginosa*, with inhibition zones of 12mm, 14mm and 18 mm respectively. Moreover, the minimum inhibitory concentration (MIC) of the MnO NPs was 12.5 U/mL as determined by resazurin microtitre assay. The activities of some antibiotics remarkably increased when combined with MnO₂NPs (at MIC).

Figure 2 shows that FTIR spectrum of MnO₂. The bands at 515 and 480 cm⁻¹ correspond to the Mn-O bond. The absorption peak at 1313.96 cm⁻¹ corresponds to O-C bending. 1118.53 cm⁻¹ and 1021.32 cm⁻¹ correspond to C-N stretching. The peaks at 908.59, 815.66 and 764.85 cm⁻¹ corresponds to O-H bending and 627.55 cm⁻¹ corresponds to C-H bending. MnO₂ nanoparticles of simple cubic structure were synthesized by co-precipitation method. The FTIR spectral analysis reveals the characteristic peaks of Mn-O stretching²⁸.

Material and Methods

Preparation of leaves pulp: The collected leaves of AV were washed with distilled water, dried in air and peeled. The obtained AVLP was crushed in a mortar and filtered with Whatmann filter paper. A required amount of distilled water was also added in the filtrate pulp and then divided into two parts. One part was kept un-boiled and the other one was boiled for 20 min. These two filtrates have been used as AVLP extract and preserved at below 4°C for the synthesis of MnO₂NPs

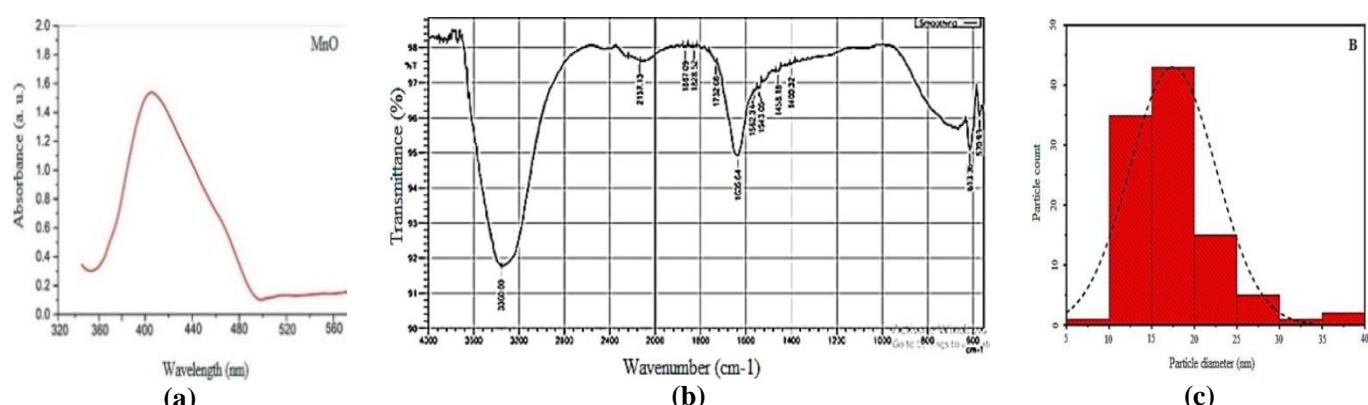


Figure 4: a. UV spectrum, b. FTIR spectrum and c. Size distributions of green tea extract and MnONPs²⁰

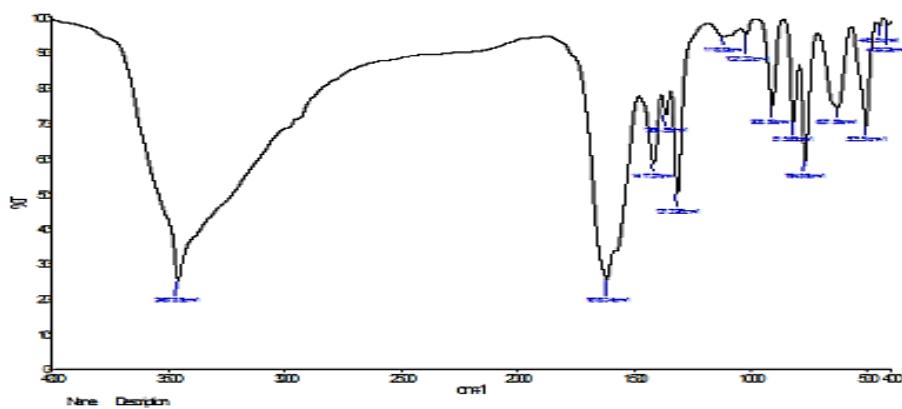


Figure 5: FTIR spectrum of MnO₂²⁸.

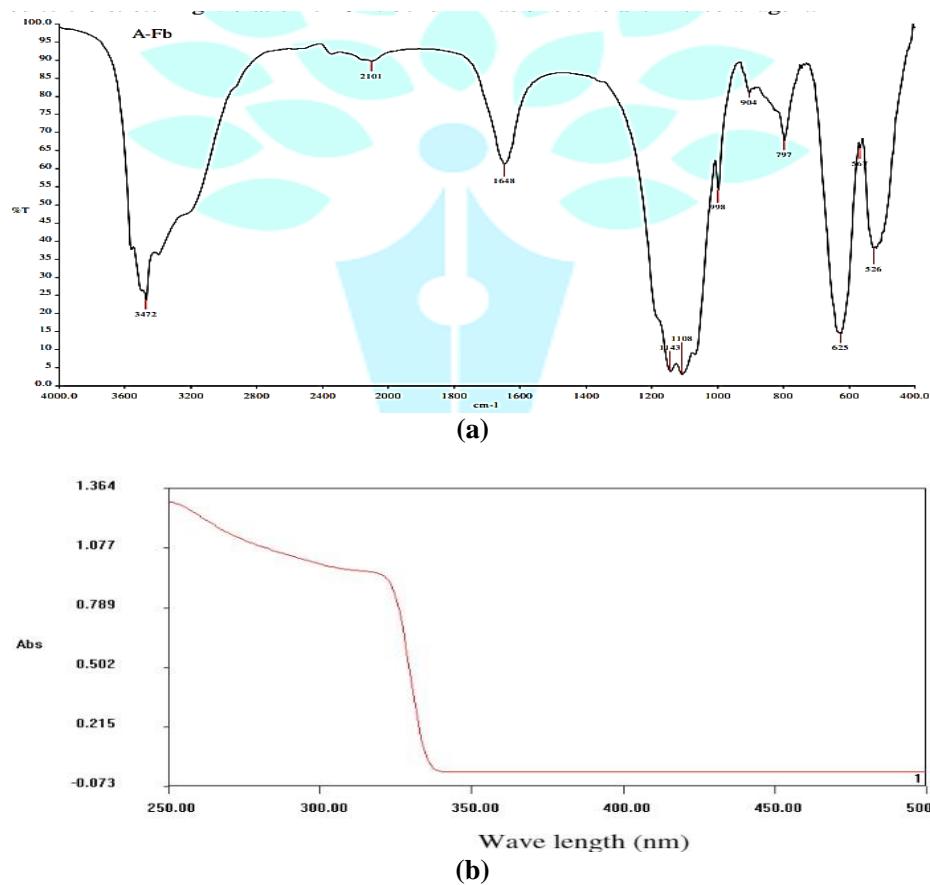


Figure 6: a. FTIR spectrum and b. UV-Vis spectrum of MnO_2NPs ⁴.

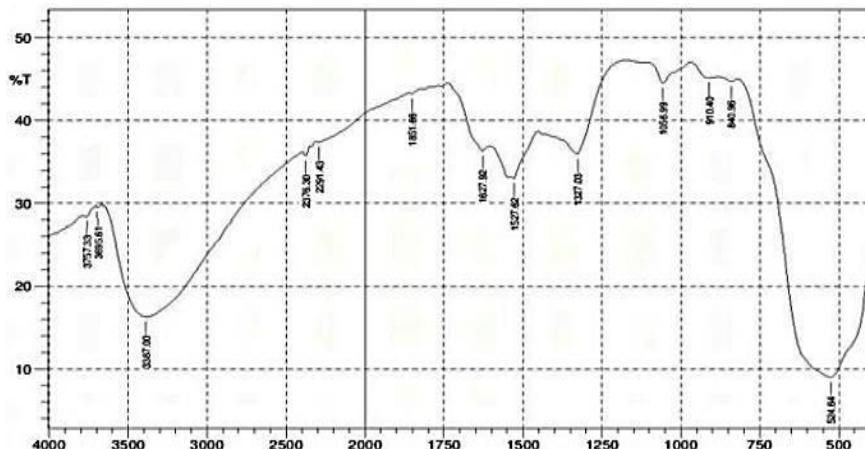


Figure 7: FTIR spectrum of MnO_2 ²⁶

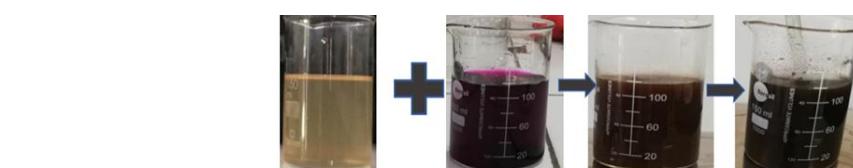


Figure 8: Boiled AVLP added with aqueous solution of KMnO_4 and showing change in colour

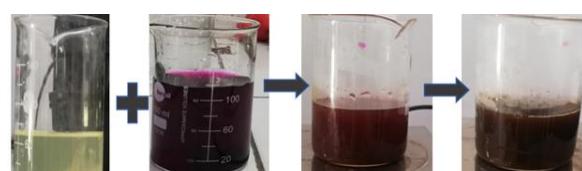


Figure 9: Un-boiled AVLP added with aqueous solution of KMnO_4 and showing change in colour

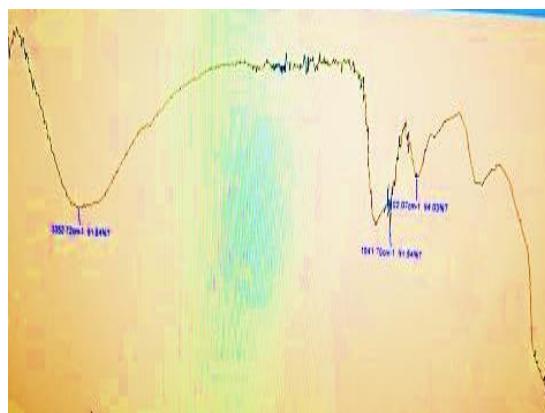


Figure 10: FTIR spectrum of MnO_2 by un-boiled AVLP.

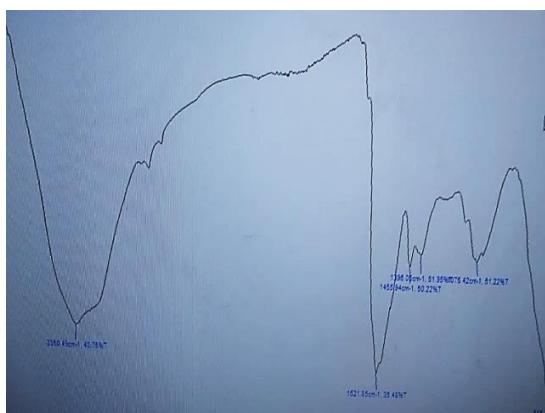


Figure 11: FTIR spectrum of MnO_2 by boiled AVLP.

KMnO_4 used was of AR grade. The aqueous solution of KMnO_4 was prepared by dissolving 0.05 g KMnO_4 in 100 ml of distilled water. 15 ml un-boiled and boiled AVLP extracts were dissolved in 50 ml of KMnO_4 solution separately. Changed colours of the both extracts are shown by the figure 10 and 11. These solutions were stirred over a magnetic stirrer for 2 hours at 40°C and sonicated for 30 minutes at the temperature range from 30°C to 47°C. The obtained suspensions were then centrifuged. The brownish black nano-powder of MnO_2 -NPs settled down and was washed with ethanol followed by distilled water several times. The washed powder was dried in oven at 90°C for 4 hours preserved in sealed plastic bottles for characterizations and antimicrobial activities.

Results and Discussion

Fourier transform infrared characterization was done in the wavelength range at 400-4000 cm^{-1} as shown in the figure 10 and 11. The spectrum obtained with boiled extract of AVLP is closer to earlier studies. MnO_2 -NPs use the extract of AV plant. The characteristic peaks are obtained at 3378 cm^{-1} , 1633 cm^{-1} , 1383 cm^{-1} , 1060 cm^{-1} and 545 cm^{-1} with peaks of O-H, C=O, C=C, C-C, C-Mn and Mn-O bonds respectively on the surface of MnO_2 -NPs¹³.

The brown colour of the prepared nanocomposite was the result of the surface plasmon resonance (SPR) caused by the oscillation of electrons on the surface of the nanocomposite. The shade of the compound depends on two main factors,

namely, the shape of the compound and the size of the NPs. The UV-Vis spectrum of the MnO NPs solution shows a peak in the visible region at 410 nm. Theoretically, MnO_2 -NPs possess an absorption peak in the range of 350–410 nm. As shown in figure 4A, the functional groups in green tea extract were identified and their role in MnO NP synthesis was analysed. The size distribution was around 18 nm²⁰.

The FTIR analysis results indicate the existence of bio-components on the NPs' surface such as alkaloids, tannins and glycosides. FTIR measurements were utilised to determine the interaction between manganese salts and protein molecules capable of reducing Mn ions and stabilising MnONPs. FTIR analysis revealed some remarkable bands of the vibrations of the hydroxyl group, C–O, MnO and others. This corresponds to the MnO NPs and bio-compounds on the surface^{2,6}.

Conclusion

The FTIR spectrum obtained by boiled AVLP extract is better method than un-boiled AVLP extract for the synthesis of MnO_2 -NPs at 3350.49 cm^{-1} , 1621.85 cm^{-1} , 1455 cm^{-1} , 1396 cm^{-1} , 1076 cm^{-1} and 516 cm^{-1} , six peaks corresponding to O-H, C=O, C=C, C-C, C-Mn and Mn-O bonds respectively. This NM has antimicrobial activity and we can modify it for many other applications such as conductance, sensors etc. with innovative ideas.

Acknowledgement

The authors acknowledge the Department of Science and Technology, New Delhi for support under the DST, FIST grant 2016.

References

1. Alhalili Z., Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus Globulus leaf extract: Adsorption and design of experiments, *Arabian Journal of Chemistry*, **15**(5), 103739, doi.org/10.1016/j.arabjc.2022.103739 (2022)
2. Aqil F., Ahmad I. and Mehmood Z., Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants, *Turkish J. Biol.*, **30**(3), 177-183 (2006)
3. Bhattacharya G., Sas S., Wadhwa S., Mathur A., McLaughlin J. and Roy S.S., *Aloe vera* assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications, *RSC Adv.*, **7**, 26680-26688 (2017)
4. Cherian E., Rajan A. and Baskar G., Synthesis of manganese dioxide nanoparticles using co-precipitation method and its antimicrobial activity, **1**(1), 17-22 (2016)
5. Das D. and Saikia B.J., Synthesis, characterization and biological applications of cobalt oxide (Co₃O₄) nanoparticles, *Chemical Physics Impact*, **6**, 100137, doi.org/10.1016/j.chphi.2022.100137 (2023)
6. Devendran G. and Balasubramanian U., Qualitative phytochemical screening and GC-MS analysis of Ocimum sanctum L. leaves, *Asian J. Plant Sci. Res.*, **1**(4), 44-48 (2011)
7. Dhall A. and Self W., Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications, *Antioxidants (Basel)*, doi: 10.3390/antiox7080097 (2018)
8. Ezealigo S., Ezealigo B.N., Aisida S.O. and Ezema F.I., Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective, *JCIS Open*, **4**, 100027 (2021)
9. Farani M.R., Farsadrooh M., Zare I., Gholami A. and Akhavan O., Green Synthesis of Magnesium Oxide Nanoparticles and Nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications, *Catalysts*, **13**, 642, doi.org/10.3390/catal13040642 (2023)
10. Ganeshan S., Ramasundari P., Elangovan A., Arivazhagan G. and Vijayalakshmi R., Synthesis and Characterization of MnO₂ Nanoparticles: Study of Structural and Optical Properties, *Int. J. Sci. Res. in Physics and Applied Sciences*, **5**(6), 5-8 (2017)
11. Garg A.K., Singh K.P. and Praveen G., Nanomaterials: Introduction, Methods of Synthesis, Classification, Properties and Applications, Innovative approaches in basic science and environmental technology, 1st edition (2023)
12. Joshi N.C. and Prakash Y., Leaves extract-based biogenic synthesis of cupric oxide nanoparticles, characterizations and antimicrobial activity, *Asian J. Pharm. Clin. Res.*, **12**, 288-91 (2019)
13. Joshi N.C., Siddiqui F., Salman M. and Singh A., Antibacterial Activity, Characterizations and Biological Synthesis of Manganese Oxide Nanoparticles using the Extract of Aloe vera, *Asian Pac. J. Health Sci.*, **7**(3), 27-29 (2020)
14. Karimi J. and Mohsenzadeh S., Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings, *Russ J. Plant Physiol.*, **63**, 119-123, doi.org/10.1134/S1021443716010106 (2016)
15. Khine E.E. et al, Synthesis and characterization of calcium oxide nanoparticles for CO₂ capture, *J. Nanopart. Res.*, **24**, 139, doi.org/10.1007/s11051-022-05518-z (2022)
16. Krause B.C. et al, Aluminum and aluminum oxide nanomaterials uptake after oral exposure - a comparative study, *Sci. Rep.*, **10**, 2698, doi.org/10.1038/s41598-020-59710-z (2020)
17. Maharjan H. Radha and Nampoothiri P. Laxmipriya, Evaluation of biological properties and clinical effectiveness of *Aloe vera*: A systematic review, *Journal of Traditional and Complementary Medicine*, **5**(1), 21-26, doi.org/10.1016/j.jtcme.2014.10.006 (2015)
18. Mounika T., Belagali S.L. and Vadhiraj K.T., Manganese oxide nanoparticles synthesis route, characterization and optical properties, *Materials Today, Proceedings*, **75**(Supplement), 72-76, doi.org/10.1016/j.matpr.2022.11.017 (2023)
19. Parveen K. and Rafique U., Development of cobalt-doped alumina hybrids for adsorption of textile effluents, *Adsorption Science & Technology*, **36**(1-2), 182-197, DOI: 10.1177/0263617416687563 (2018)
20. Praveen G. and Agarwal S., FTIR Spectroscopy, Introduction and Recent Applications, Environmental modeling for sustainable development, 1st edition (2024)
21. Praveen G. and Akshay B., Applications of Graphene in the Field of Nanotechnology, Futuristic trends in science and technology, 1st edition (2023)
22. Praveen G. and Rajkhowa S., Recent advances of economically synthesised polymers/composites consisting of graphene and silver nanoparticles to achieve sustainable existence, *Polym. Bull.*, doi.org/10.1007/s00289-024-05199-9 (2024)
23. Praveen G., Akshay B., Joshi V., Bhardwaj S.K. and Agarwal S., Comparative Study of Conducting and Antimicrobial Behaviour of Graphene and Silver based Nano-Materials, *Res. J. Chem. Environ.*, **27**(6), 96-111, doi.org/10.25303/2706rjce0960111 (2023)
24. Salih A.M. et al, Biosynthesis of zinc oxide nanoparticles using *Phoenix dactylifera* and their effect on biomass and phytochemical compounds in *Juniperus procera*, *Sci. Rep.*, **11**, 19136, doi.org/10.1038/s41598-021-98607-3 (2021)
25. Sánchez M., González-Burgos E., Iglesias I. and Gómez-Serranillos M.P., Pharmacological Update Properties of *Aloe Vera* and its Major Active Constituents, *Molecules*, **25**(6), 1324, doi: 10.3390/molecules25061324 (2020)
26. Saod W.M., Hamid L.L., Alaallah N.J. and Ramizy A., Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract, *Biotechnology Reports*, **34**, doi.org/10.1016/j.btre.2022.e00729 (2022)

27. Taranum N., Divya and Gautam Y.K., Facile green synthesis and applications of silver nanoparticles: a state of the-art review, *RSC Adv.*, **9**, 34926, DOI: 10.1039/c9ra04164h (2019)

28. Technique F., Hemalatha C. and Lourduraj A.J.C., Synthesis and characterization of MnO₂ Nanoparticles using Co-precipitation, *International Journal of Scientific Research in Science and Technology (IJSRST)*, **3(11)**, 125-128 (2017)

29. Waghmode M.S. et al, Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation, *SN Appl. Sci.*, **1**, 310, doi.org/10.1007/s42452-019-0337-3 (2019).

(Received 12th May 2024, revised 19th May 2025, accepted 15th June 2025)